

FOCUSED SITE INSPECTION PRIORITIZATION SITE EVALUATION REPORT

PRIOR LANDFILL **RURAL ROUTE 5** CENTRALIA, ILLINOIS

CERCLIS ID NO.: ILD980989206

Prepared for:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY SITE ASSESSMENT SECTION

77 West Jackson Boulevard Chicago, Illinois 60604

September 19, 1995 Date Prepared:

U.S. EPA Region:

68-W0-0037 Contract No.:

Technical Direction Document No.: T05-9503-219

Ecology and Environment, Inc. Prepared by:

Linda Knorz

E & E Program Leader: Steven Skare

Telephone No.: (312) 663-9415

ecology and environment, inc.

111 WEST JACKSON BLVD., CHICAGO, ILLINOIS 60604, TEL. 312-663-9415 International Specialists in the Environment

recycled paper

		•
		•
		-
		٠,
		٠,
		• •
		٠,
		٠,
		٠,
		٠,
		• ,
		.,
		.,
		.,
		.,

LIST OF FIGURES

<u>Figure</u>		<u>Page</u>
2-1	Site Location Map	2-3
2-2	Site Features Map	2-4
2-3	Sample Location Map	2-5

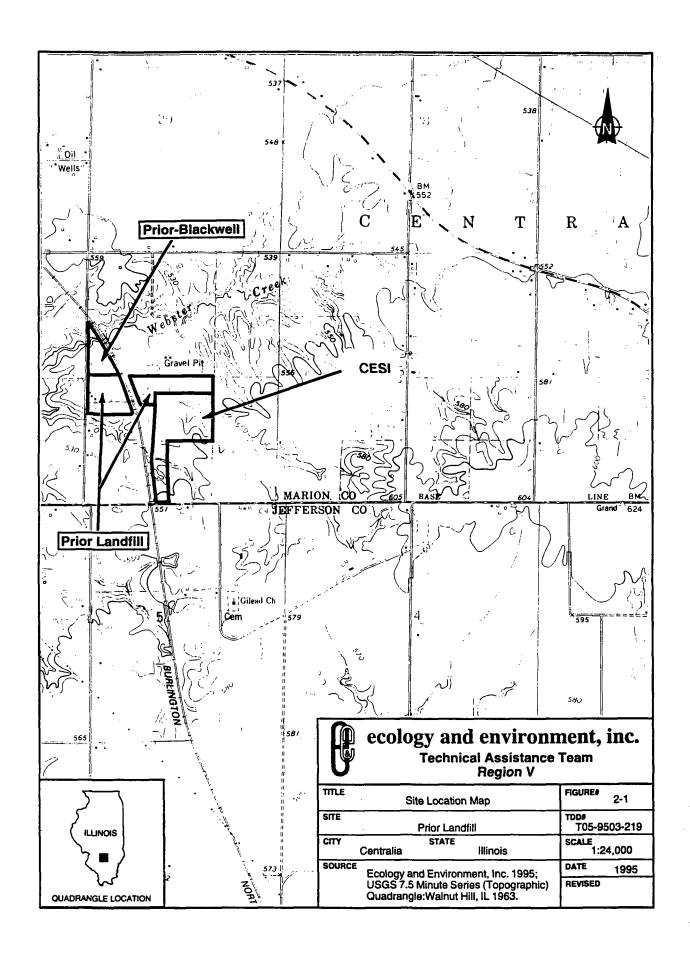
1. INTRODUCTION

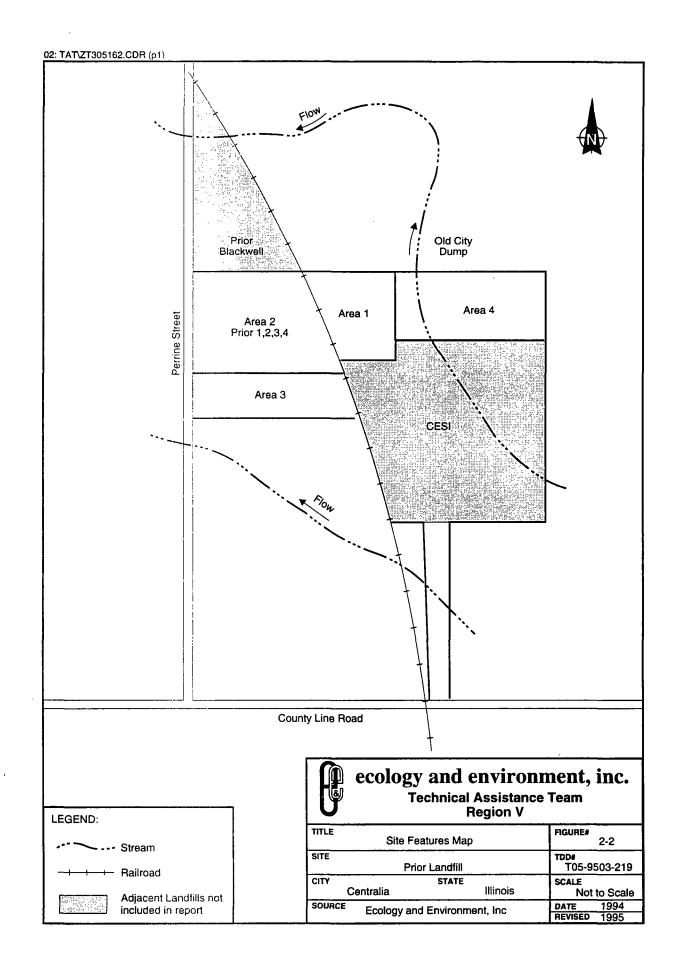
The Ecology and Environment, Inc. (E & E), Technical Assistance Team (TAT) was assigned by the United States Environmental Protection Agency (U.S. EPA), under Contract No. 68-W0-0037, Technical Direction Document (TDD) No. T05-9503-219, to evaluate the Prior Landfill site in Centralia, Marion County, Illinois. E & E performed Focused Site Inspection Prioritization (FSIP) activities to determine whether, or to what extent, the site poses a threat to human health and the environment, and has prepared this FSIP report. The report presents the results of E & E's evaluation and summarizes the site conditions and targets pertinent to the migration and exposure pathways associated with the site. Background information was obtained from the Illinois Environmental Protection Agency (IEPA) Preliminary Assessment (PA) report, a Site Screening Inspection (SSI) report also conducted by the IEPA, personal communications with various state and local agencies, and U.S. EPA site files.

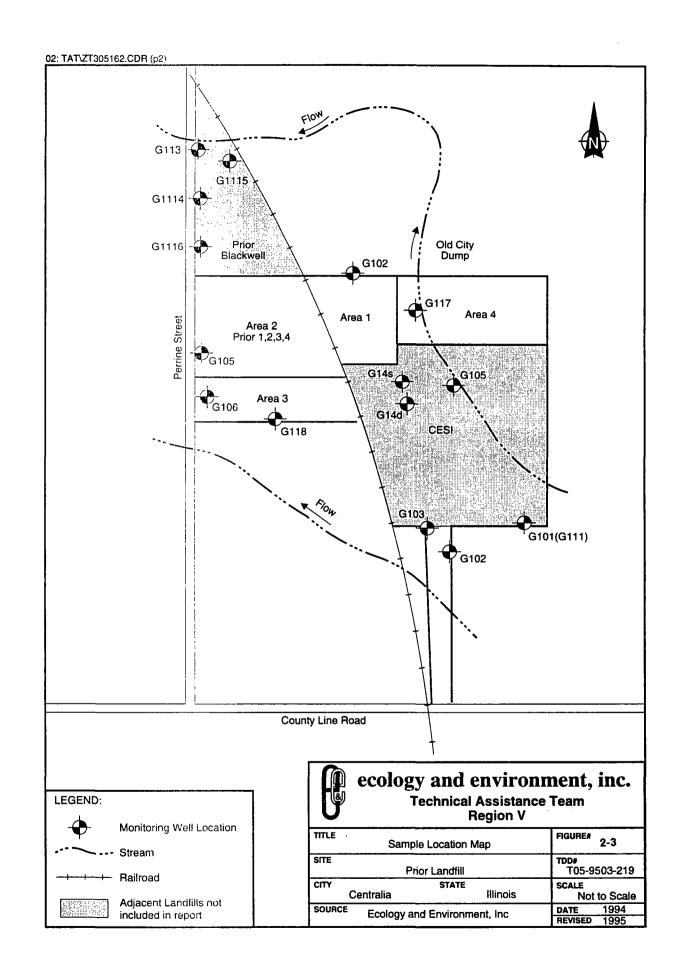
This report is organized into six sections, including this introduction. Section 2 describes the site and provides a brief site history. Section 3 provides information about previous investigations conducted at the site. Section 4 provides information about the four migration and exposure pathways (groundwater migration, surface water migration, soil exposure, and air migration). Section 5 is a summary of the FSIP. References used in the preparation of this report are listed in Section 6.

2. SITE DESCRIPTION AND HISTORY

The Prior Landfill (Prior) site is located at Rural Route 5, in Centralia, Marion County, Illinois (sec. 32, T. 1 N., R. 1 E.). The coordinates of the site are latitude 38°28'39" North and longitude 89°06'00" West (IEPA 1985a). The site is a 29-acre landfill that has been inactive since 1987, but has not been certified closed. Two adjacent landfills referred to as Prior-Blackwell and Centralia Environmental Services, Inc. (CESI) are owned by the same owner as the Prior site; however, these landfills are operated under separate permits and IEPA identification numbers. The focus of this FSIP report is on the Prior Landfill, also referred to by the IEPA as Prior #1, 2, 3 & 4 (IEPA ID No. 1218020006). In addition, another landfill referred to the Old City Dump is located approximately 150 feet north of the site. The exact size and years of operation of this dump are unknown.


The land use surrounding the site is predominantly rural and sparsely populated. Railroad tracks divides the site into two portions with the landfill located on the east and west sides. The nearest residential area is 0.25 mile north of the site and the population within one mile of the site is approximately 277 persons based on straight-line distances (IEPA 1985b). The site location is shown on Figure 2-1.


The site is situated on approximately 29 acres with two intermittent streams; one stream flows in a south to north direction on the portion of the landfill east of the railroad tracks and the second stream is located on the southern border of the portion of the landfill west of the railroad tracks. The second stream probably was re-routed to the south when the landfill operations began. Site features are shown in Figure 2-2. Webster Creek, the nearest surface water body, at its nearest point to the site, is located approximately 25 feet north of the site. The site is reported to have locked gates at access roads only. There is evidence of trespass, including dirt bike trails on the slopes of the landfill (IEPA 1995).


In 1975, an IEPA permit (permit No. 1975-37-OP) was issued to Mr. John Prior to operate a solid waste disposal site consisting of 29 acres. The permit identifies the following areas and acreage: Area #1 with 6 acres east of railroads tracks; Area #2 with 8 acres west of railroad tracks; Area #3 with 7 acres west of railroad tracks; and Area #4 with 8 acres east of railroad tracks. Besides general refuse, permitted special wastes, including sewage and industrial sludges, asbestos containing material, used paint and ink, and soil mixed with diesel fuel, were accepted at the landfill from 1975 to 1987. Groundwater leachate systems or liners have not been installed at the site. It is reported that the Prior site has five on-site monitoring wells, however, during the most recent sampling event at the site conducted by the IEPA in June 1994, only two were located and sampled. In 1980, Mr. Prior installed the three on-site monitoring wells, but no records are available at this time. In 1988, Holcomb Foundation Engineering Company installed two monitoring wells, G117 and G118 at the Prior site.

The site ceased operations in the late 1980s, however, due to various permit violations, the site has not been certified closed by IEPA. Violations include steep slopes on the west and south sides of the landfill, subsided cover, and ravines with leachate flowing in an on-site intermittent stream towards Webster Creek north of the site. In addition, the owner has not provided adequate groundwater sampling and reporting to the IEPA (IEPA 1995).

The Prior site was an operating landfill from 1975 to 1987. During this time the Prior site had neither a Resource Conservation and Recovery Act (RCRA) permit nor a National Pollutant Discharge Elimination System (NPDES) permit.

3. PREVIOUS INVESTIGATIONS

In the early 1980s, numerous citizens complaints were filed against the Prior Landfill regarding blowing litter, late night dumping, and trucks carrying mud and debris off site. As a result of the citizen unrest, the IEPA conducted a PA at the Prior site in April 1985. The site was assigned a high priority because of the citizen complaints (IEPA 1985a).

In July 1985, the IEPA conducted an SSI in which sampling was performed on groundwater. The IEPA also monitored the ambient air with an Organic Vapor Analyzer (OVA) and a Trace Gas Analyzer (TGA). No volatile or airborne contaminants were detected in the air samples. The IEPA collected groundwater samples from three on-site monitoring wells. The samples were analyzed for Target Analyte List (TAL) inorganics only. The sample results indicated no contamination of the groundwater or the ambient air (IEPA 1985b).

In 1987, the Prior site stopped accepting wastes. IEPA site inspections conducted from 1987 through 1994 indicate the site was in violation of permit requirements, including inadequate sampling records, steep slopes on the western and southern sides of the landfill, ravines with leachate seeps, and subsided cover (IEPA 1995).

From June 28 through July 1, 1994, the IEPA collected groundwater samples from two of the five monitoring wells located at the Prior site as part of a groundwater investigation. The other three wells could not be located. Analytical results indicated chloride was detected at 248 milligrams per liter (mg/L), manganese at 299 micrograms per liter (ug/L), and sulfate at 1,310 mg/L in monitoring well G106. In monitoring well G118 manganese was detected at 780 ug/L and sulfate at 1,480 mg/L. These concentrations of

manganese, chloride, and sulfate exceeded Title 35 Illinois Administrative Code (IAC) 620 Groundwater Standards (IEPA 1995).

4. MIGRATION AND EXPOSURE PATHWAYS

This section describes the four migration and exposure pathways associated with the Prior site. Section 4.1 discusses the groundwater migration pathway; Section 4.2 discusses the surface water migration pathway; Section 4.3 discusses the soil exposure pathway; and Section 4.4 discusses the air migration pathway.

4.1 GROUNDWATER MIGRATION PATHWAY

This section discusses regional and site-specific geology and soils, groundwater releases, and targets associated with the groundwater migration pathway at the site.

4.1.1 Geology and Soils

The general geology of the area consists of approximately 20 feet of glacial drift. The glacial drift consists primarily of non-water yielding pebbly clay (glacial till). The glacial drift extends to bedrock of Pennsylvanian Age which consists primarily of shale, sandstone, and coal (Illinois State Geological Survey, ISGS 1973). Groundwater flow is northwest toward Webster Creek. In 1973, ISGS reported no record of any drinking water wells in the vicinity of the site, and that nearby residents hauled water from Centralia (ISGS 1973).

In 1988, Holcomb Foundation Engineering Company was hired by Mr. Prior, and installed two monitoring wells at the Prior landfill site (G117 and G118).

The residents of Centralia and surrounding communities obtain drinking water from the Raccoon Lake Reservoir, located approximately 2 miles northeast of the site. Based on information from the Centralia Public Works Department no residents obtain drinking water from private wells within 4 miles of the site (Sanders 1995).

4.1.2 Groundwater Releases

A release of hazardous substances from the Prior site to groundwater is likely based on sampling results from on-site monitoring wells. In June 1994, the IEPA collected two groundwater monitoring well samples, G106 and G118, as part of a site inspection. Three other on-site monitoring wells could not be found during this investigation, and therefore could not be sampled. The analytical results of the groundwater samples indicated that chloride, manganese, and sulfate exceeded Title 35 IAC 620 groundwater standards. No engineered systems for groundwater containment (e.g. liner, leachate collection system) exist at the site.

4.1.3 Targets

The 40,000 persons from Centralia and surrounding communities obtain drinking water from the Raccoon Lake Reservoir, located approximately 2 miles northeast of the site. No known well users are located within a 4-mile radius of the site (Sanders 1995).

4.2 SURFACE WATER MIGRATION PATHWAY

The potential exists that a release to surface water has occurred based on past and present IEPA observations of leachate seeps flowing in a southern on-site intermittent stream towards Webster Creek, located approximately 25 feet north of the site (IEPA 1995).

Two intermittent streams are located on the Prior site. One stream located on the landfill portion east of the railroad tracks flows through the Prior site in a northwesterly direction towards Webster Creek. The second stream is located on the southern border of the landfill west of the railroad tracks. Wetlands are located adjacent to the landfill west of the railroad tracks on the southern border of the site. In addition, the soils along the banks of Webster Creek are favorable to plaustrine forested wetlands, located 25 feet north of the site (USDI 1987). The creek is used recreationally, and provides habitat for fishes and other aquatic organisms (IEPA 1985). The site is located inside the 500-year floodplain of Webster Creek (USDI 1987). Based on surface topography, surface water runoff from the site is expected to flow towards the on-site intermittent streams and towards Webster Creek. No engineered controls for surface water exist at the site. No surface water samples have been collected from Webster Creek in previous IEPA investigations. No drinking water intakes are

known to exist along Webster Creek. Raccon Lake is not located downstream of the site, and therefore, it is not expected to be affected by the site.

4.3 SOIL EXPOSURE PATHWAY

A release of hazardous substances from the Prior site to surrounding soils is possible based on previous site operations. Citizen complaints filed in the early 1980s regarding blowing litter and trucks carrying mud and debris off-site suggest that wastes could have been spread to the surrounding soils. On-site soils consist of glacial till. No soil samples have been collected from the site during previous IEPA investigations. It is reported that bike trails on the steep slopes of the landfill indicate trespass has occurred (Letski 1995). The site is not fully fenced, and only access roads on the west and north sides have locked gates (IEPA 1995). Access to the site is not restricted. The nearest residence is located 0.25 mile north of the site. Approximately 227 persons live within 1 mile of the site, based on straight-line distances. No schools are located within 200 feet of the site (IEPA 1985). It is unknown how many workers were employed at the site during the time of operation.

4.4 AIR MIGRATION PATHWAY

A release of hazardous substances to air has not been documented based on ambient air sample results taken during the SSI. The area surrounding the site is rural and sparsely populated, and approximately 277 persons are located within one mile of the site based on straight-line distance (IEPA 1985). No engineered controls for the prevention of a release to the air exist (i.e., gas collection systems).

5. SUMMARY

E & E has evaluated the Prior site using the existing IEPA and U.S. EPA files, various state information services, and personal communications. The Prior site has been an inactive landfill since 1987, but has not been certified closed (IEPA 1995). The Prior site operated from 1975 to 1987 as a special waste landfill. Two adjacent landfills, Prior-Blackwell and CESI, are operated by the same owner as the Prior site. In addition, an inactive landfill referred to as the Old City Dump is located just north of the site property. The surrounding area is rural and sparsely populated.

In April 1985, the IEPA conducted a PA due to citizen complaints regarding blowing, litter and late night dumping. In July 1985, the IEPA conducted an SSI. On-site air and groundwater samples were collected. No contamination was detected in either the air or the groundwater samples. IEPA site inspections in the early 1990s reported that the site was in violation of its operating permit which included, steep slopes, ravines with leachate seeps flowing, and subsided cover. In addition, the site owner did not submit quarterly monitoring well sample records to the IEPA.

The residents from the city of Centralia and surrounding communities receive their drinking water from Raccoon Lake Reservoir, located 2 miles northeast of the site. This reservoir is located upgradient of the site. The geology of the area consists of 20 feet of glacial drift.

A release of substances to an on site intermittent stream has been observed. The stream flows into Webster Creek, located approximately 25 feet north of the site. No engineered surface water containment systems exist at the site.

The Prior site is not fenced, and locked gates exist at the access roads only. Bike trails are evident on the slopes of the landfill, indicating trespassing has occurred. The nearest residence is located 0.25 miles north of the site. No schools or daycare facilities are located within 200 feet of the site. Wetlands are located adjacent of the southern border of the landfill area west of the railroad tracks and along Webster Creek, located approximately 25 feet north of the landfill area east of the railroad tracks.

A release of hazardous substances to air is unlikely based on air samples collected during the 1985 IEPA SSI. No air violations or citizen complaints regarding odors have been reported. It is unknown how many workers were employed at the site during the 12 years of operation.

6. REFERENCES

Note: References not included in Appendix B: documents that are currently available within U.S. EPA files; copyright documents that are currently available in E & E's library, maps produced by either the United States Geological Survey or the Illinois State Geological Survey; and documents that are created by the various state agencis for public use.

- Illinois Environmental Protection Agency, (IEPA) April 14, 1995, Groundwater Inspection Report of Three Prior Landfill Sites, Centralia Illinois.
- _____, July 24, 1985b, Site Inspection Report of Prior Landfill, Centralia Illinois.
- _____, April 18, 1985a, Preliminary Assessment of Prior Landfill, Centralia Illinois.
- Illinois State Geological Survey, (ISGS) June 5, 1973, Hydrogeologic Information for Centralia/Municipal Solid Waste Site, Urbana, Illinois.
- Illinois Institute of Natural Resources, State Geological Survey Division. (IINR), February 20, 1981, Hydrogeologic Evaluation of Prior Landfill, Champaign, Illinois.
- Letski, Connie, August 18, 1995, personal communication with Linda Knorz, E & E Chicago, Illinois.
- Sanders, Jerry, August 18, 1995, Centralia Public Works, Facility Operator, personal communication with Linda Knorz, E & E Chicago, Illinois.
- USDI, National Wetland Inventory Map, 1987, Walnut Hill Quadrangle, Washington, D.C.
- USGS, 1963, Walnut Hill Topographic Map, 7.5 Minute Series, Reston, Virginia.

APPENDIX A

1994 IEPA GROUNDWATER DATA

SUMMARY INORGANIC ANALYTICAL RESULTS COLLECTED BY THE IEPA

	35 IAC 620 GW Standard	ds	Monitor Point No. G106 PRIOR 182 Sample Type GW		Monitor Point No. G113 PRIOR-BLACKW Sample Type GW		Monitor Point No. G115 PRIOR-BLACKW Sample Type GW		Monitor Point No. G116 PRIOR-BLACKWI Sample Type	ELL
Inorganic Parameter	11-614	-4-1-1	-						GW	
Parameter	Unfiltered (T	CLASS II	Sampling Date 06/28/94		Sampling Date 06/30/94		Sampling Date 06/29/94		Sampling Date 06/28/94	
620 INORGANICS	GW>10"	CLASS II	TOTAL	DISSOLVED	TOTAL	DISSOLVED	TOTAL	DISSOLVED	TOTAL	DISSOLVED
		200				DISSOLVED	TOTAL	DISSOLVED		71.3
Arsenic - UG/L Barium - UG/L	2000	200	12 37	9.2			53	26	68.7	50
Boron - UG/L	2000	2000	430	1/			67	26	84	50
Cadmium - UG/L	5	50	430				0/		590	
			040	054			-			
Chloride - MG/L	200	200	248	251			57.7	58.2	630	617
Chromium - UG/L	100	1000	<	<			<	<	E	<
Cobalt - UG/L	1000	1000		<				10		11
Copper - UG/L	650	650	<	<			<	<	6	<
Cyanide - MG/L or UG/L	0.2 or 200	0.6 or 600	<				<		<	
Fluoride - MG/L	4	4	0.23				0.11		0.22	
Iron - UG/L	5000	5000	4280	<			3540	345	15000	5410
Lead - UG/L	7.5	100	<	<			<	<	<	<
Manganese - UG/L	150	10000	299	148			4300	4410	3500	3130
Mercury - UG/L	2	10	<	<			<	<	<	•
Nickel - UG/L	100	2000	20	23	100 C 100 C		34	27	135	103
Nitrate as N - MG/L	10	100	0.06	DESCRIPTION			0.03			
PH - lab	6.5-9.0	6.5-9.0	7.3				6.7	ELSANDER ST	A 10 10 10 10 10 10 10 10 10 10 10 10 10	
PH - field	6.5-9.0	6.5-9.0	6.9		6.16		6.06		6-73	6.73
Selenium - UG/L	50	50	<	<			<	<	Z	
Silver - UG/L	50	-	4	<			<	4	<	
Sulfate - MG/L	400	400	1310	1300			320	300	380	360
TDS (ROE) - MG/L	1200	1200	1010				- 020	- 000	300	- 000
Zinc - UG/L	5000	10000	<	<			<	<		-
OTHER INORGANICS	No 620 Standard			E 201 - 40		Was a Calendar				
Alkalinity as CaCO3 - MG/L	NO 020 Standar	45	628	628			365	362	65-3	653
Aluminum			020	020			- 000	- 002	677	000
Ammonia as N - MG/L			3.6	3.3			0.07	0.9	0.07	0.08
Antimony, UG/L			0.0	10					1	. <
BOD, 5-day			33		ELECTION OF THE		<		7	
Beryllium - UG/L	ASSESSED TO SECURE			<				<		
Calcium - MG/L	A CONTRACTOR OF THE PARTY OF TH		THE RESIDENCE	169	Table 1		Barrier A	132		152
Magnesium, UG/L				226000				60900		183000
NH3 + NH4 as N - MG/L			The State of the						125 (515)	

יביי ויפח חסנים:

SUMMARY INORGANIC ANALYTICAL RESULTS COLLECTED BY THE IEPA

COLLECTED BY THE IEPA										
Ž	1		Monitor Point No.	•	Monitor Point No		Monitor Point No.		Monitor Point No.	
recycled papers	35 IAC 620		G106		G113		G115		G116	
<u> </u>	GW Standard	s	PRIOR 182		PRIOR-BLACKY	VELL	PRIOR-BLACKWELL Sample Type		PRIOR-BLACKWELL Sample Type GW Sampling Date	
oer i			Sample Type		Sample Type					
Inorganic			GW		GW Sampling Date		GW			
Parameter	Unfiltered (To	otals)	Sampling Date				Sampling Date			
	CLASS I	CLASS II	06/28/94		06/30/94		06/29/94		06/28/94	
NO2 & NH4 as N - MG/L										
Phosphorous (P) - MG/L				0.1				0.02		0.04
Potassium, UG/L				9980				716		960
Sodium - MG/L			<u> </u>	430				67.5		372
Strontium - UG/L			<u> </u>]	<u></u>	· .			
Sulfide - MG/L			<	<			<	<		<
Thallium - UG/L				<				<	<u> </u>	<
Vanadium - UG/L				7				<		<
FIELD MEASUREMENTS								·		
Millivolts			}							
Spec. Conductance - field			ļ		<u> </u>	<u> </u>	52			30
Spec. Conductance - lab			30				14			
Water Temp, deg C			16.1		17.2	<u> </u>	15.5			20.7
Water Temp, deg F					 				ļ	
WELLHEAD INFO SAMPLE	INFO								<u> </u>	
%O2										
CO			<u> </u>	<u> </u>	<u> </u>		<u> </u>			
Depth to water from Measure Poi	<u>nt</u>				<u> </u>	<u> </u>			[
Elevation of measureing pt.					<u> </u>		- 		II	
Groundwater Elev.			<u> </u>		ļ				 	
H2S			 	ļ	ļ		- 		├──	
PID: headspace			ļ		 	}			ł	
Passport: headspace		· · · · · · · · · · · · · · · · · · ·	ļ		 		-		 	
OTHER REPORT REQ'S			1		 		<u> </u>			
Bottom of well elev.					ļ				Įl	
Depth to water below LS					<u> </u>			·	 	
Well depth below LS			<u> </u>	L	L	<u> </u>	<u> </u>			

Note: All 620 groundwater standards are based on total analyses.

MG/L values for groundwater standards listed in 35 IAC 620 were converted to

< = Not Detected

Bolded Number = Exceeds GW Standard

SUMMARY INORGANIC ANALYTICAL RESULTS COLLECTED BY THE IEPA

	35 IAC 620 GW Standar	ds	Monitor Point No. G118 PRIOR 182 Sample Type		Monitor Point No. G14D CESLF Sample Type		Monitor Point No. G14S CESLF Sample Type	
Inorganic			GW		GW		GW	
Parameter	Unfiltered (1	otals)	Sampling Date 06/28/94		Sampling Date 06/29/94		Sampling Date 06/29/94	
620 INORGANICS	GW>10°	CLASS II	TOTAL	DISSOLVED	TOTAL	DISSOLVED	TOTAL	DISSOLVED
Arsenic - UG/L	50	200	<	DIOGOETED	44.6	40.2		DIGGOLVED
Barium - UG/L	2000	2000	15	6	250	225		10
Boron - UG/L	2000	2000	50	0	76	223	200	10
Cadmium - UG/L	5	50	20	<	<	<	<	<
Chloride - MG/L	200	200	91.8	82.2	486	493	899	882
Chromium - UG/L	100	1000	7/1.0	02.2	400	433	67	002
Cobalt - UG/L	1000	1000		<		5		-
Copper - UG/L	650	650	4	<	<	5	37	<
Cyanide - MG/L or UG/L	0.2 or 200	0.6 or 600	4		<		<	
Fluoride - MG/L	4	4	0.16		0.17		0.17	
Iron - UG/L	5000	5000	1350	<	7310	5960	60300	216
Lead - UG/L	7.5	100	1376	<	<	<	<	<
Manganese - UG/L	150	10000	780	30	750	676	1770	1340
Mercury - UG/L	2	10	2	<	<	<	<	<
Nickel - UG/L	100	2000	<	<		<	72	23
Nitrate as N - MG/L	10	100	0.34		0.05		0.03	
PH - lab	6.5-9.0	6.5-9.0	7.1		7.3		7.1	
PH - field	6.5-9.0	6.5-9.0	7.50	7.5	6.91		6.59	
Selenium - UG/L	50	50	<	<	<	<		
Silver - UG/L	50		4			<	3	6
Sulfate - MG/L	400	400	1480	1380	91	87	2800	2700
TDS (ROE) - MG/L	1200	1200	1110	<				1 1 1 1 1 1
Zinc - UG/L	5000	10000	4		<	<	140	
OTHER INORGANICS	No 620 Standar	ds			week by the tell			
Alkalinity as CaCO3 - MG/L			5-71	567	461	464	589	602
Aluminum								
Ammonia as N - MG/L			Z.	0.03	1.1	1.1	0.05	0.03
Antimony, UG/L			8.5	1.2		<		<
BOD, 5-day					7		<	
Beryllium - UG/L				<		<		<
Calcium - MG/L				240 194000		125		588
Magnesium, UG/L NH3 + NH4 as N - MG/I	gnesium, UG/L					50500		334000

SUMMARY INORGANIC ANALYTICAL RESULTS COLLECTED BY THE IEPA

		· · · · · · · · · · · · · · · · · · ·	Monitor Point No.		Monitor Point No.		Monitor Point No.		
	35 IAC 620		G118		G14D		G14S		
	GW Standard	is	PRIOR 182		CESLF		CESLF		
			Sample Type		Sample Type		Sample Type		
Inorganic			GW		GW		GW		
Parameter	Unfiltered (T	otals)	Sampling Date		Sampling Date		Sampling Date		
	CLASSI	CLASS II	06/28/94		06/29/94		06/29/94		
NO2 & NH4 as N - MG/L									
Phosphorous (P) - MG/L	 	·		0.01		0.05		0.03	
Potassium, UG/L			-l	1910		3420		2650	
Sodium - MG/L	_ ·			246		264		453	
Strontium - UG/L			1		l		 		
Sulfide - MG/L			<u> </u>	<	<	<	<u> </u>	<	
Thallium - UG/L			1	<		<			
Vanadium - UG/L				<		<		<	
FIELD MEASUREMENTS			<u> </u>				<u> </u>		
Millivolts	·		<u> </u>		<u> </u>		<u> </u>		
Spec. Conductance - field			I	1	33.3		22		
Spec. Conductance - lab			1		23		51		
Water Temp, deg C	····		1	27.5	33.3		18.1		
Water Temp, deg F			·		l		<u> </u>		
WELLHEAD INFO SAMP	LE INFO				ll				
%O2			<u> </u>		l		1		
CO						·			
Depth to water from Measure F	Point		<u> </u>			·	<u> </u>		
Elevation of measureing pt.							l		
Groundwater Elev.					ll		il		
H2S	***		<u> </u>						
PID: headspace									
Passport: headspace			<u> </u>				<u> </u>		
OTHER REPORT REQ'S			<u> </u>						
Bottom of well elev.									
Depth to water below LS									
Well depth below LS	are based on total ana								

Note: All 620 groundwater standards are based on total analyses.

MG/L values for groundwater standards listed in 35 IAC 620 were converted to

< = Not Detected

Bolded Number = Exceeds GW Standard

SUMMARY ORGANIC ANALYTICAL RESULTS COLLECTED BY THE IEPA

COLLECTED BY THE IEPA	1		Monitor Point No		Monitor Point No	 _	Monitor Point No.		Monitor Point No.		
						•		•			
	35 IAC 620		G106		G113		G115		G116		
0	GW Standard	 \$	PRIOR 182		PRIOR-BLACKY	VELL	PRIOR-BLACKY	VELL	PRIOR-BLACKWELL		
Organic	1		Sample Type		Sample Type		Sample Type		Sample Type		
Parameter			GW		GW		GW		GW		
(ug/l)	Unfiltered (To		Sampling Date		Sampling Date		Sampling Date		Sampling Date		
	CLASS I	CLASS II	06/28/94	т	06/30/94		06/29/94		06/28/94		
	GW>10'	l	TOTAL	DISSOLVED	TOTAL	DISSOLVED	TOTAL	DISSOLVED	TOTAL	DISSOLVED	
620 VOLATILES						L			l		
1,1,1-Trichloroethane	200	1000	<u> </u>			l	<		<		
1,1-Dichloroethylene	7	35	<u> </u>	<u> </u>	<	<u> </u>	<		<		
1,2-Dichloroethane*	5	25	\ <u><</u>		<u> </u>		<		<	<u> </u>	
1,2-Dichloropropane*	5	25	<u> </u>	ļ	<	ļ	<	<u></u>	<u> </u>		
BTEX - 1	11705	13525		 	<u> </u>		}		 	·	
Benzene*	5	25	<u> </u>	ļ	<u> </u>	<u> </u>		ļ	<u> </u>		
Carbon Tetrachloride*	5	25	\ <u>`</u>		\<		<u> </u>	}	 	L	
Cis-1,2-Dichloroethylene	70	200	<u> </u>	l	<u> </u>	 	<u> </u>	ļ	<u> </u>		
Ethylbenzene	700	1000	·		\ <u></u>	 	\ <u>`</u>	 	 		
Monochlorobenzene	100	500	ļ	ļ	ļ	ļ			 		
Styrene	100	500		ļ	<u> </u>	ļ			 		
Tetrachloroethylene*	1000	25	<u> </u>	 							
Toluene Trans-1,2-Dichloroethylene	1000	2500 500	 	 	 	 		 			
	5	25	 }	 	 	ļ	 	 	 		
Trichloroethylene* Vinyl Chloride*	- 2	10	 	ļ ————	 }	 	 	}	 }		
Xylene	10000	10000	 	 	 	 		 	 }		
620 SEMIVOLATILES	10000	10000	<u> </u>	 	·		 		 		
		4500	 	ļ	 		 		 		
1,2-Dichlorobenzene (ortho)	600 75	1500 375	<u> </u>			 		}	\ <u> </u>		
1,4-Dichlorobenzene (para) PCBs*	- 1 - 75 - 5		·	 	 	 	<u> </u>	 	 		
Pentachlorophenoi*	1 1	2.5 5	 	 	 	 	 		 }		
	 '	3		ļ	·	 	<u>`</u>	<u> </u>	`		
Phenol (Misc.) ~			13		.		 	 	·		
Phenois	100	100	.	ļ — — — —	.			<u> </u>	.		
620 PESTICIDES	_ <u> </u>	İ				1	<u> </u>	 	<u> </u>		
2,4,5-TP (Silvex)	50	250					<u></u>				
2,4-D	70	350	<u> </u>		1		<u> </u>			ļ	
Alachlor*	2	10		<u> </u>	.l		J		<u> </u>		
Aldicarb	3	15	. 			ļ	ļ	ļ	<u> </u>		
Atrazine	3	15	 	ļ	.l	ļ	ļ 			<u> </u>	
Carbofuran	40	200	1	1	}	l			1	l	
Chlordane*	2	10							<		
Endrin	2	10	<		1		<		}		

12180200 - Prior Blackwell 1218020006 -- Prior 1 &2

1214220003 - Centralia Environmental Services

Groundwater/Analytical File

SUMMARY ORGANIC ANALYTICAL RESULTS COLLECTED BY THE IEPA

			Monitor Point No		Monitor Point No).	Monitor Point No	,	Monitor Point No	·		
	35 IAC 620		G106		G113		G115		G116			
	GW Standard	ls	PRIOR 1&2		PRIOR-BLACKY	VELL	PRIOR-BLACKY	VELL	PRIOR-BLACKWELL			
Organic			Sample Type		Sample Type		Sample Type Sample Type					
Parameter	i		GW		GW		GW .		GW			
(ug/l)	Unfiltered (To	otals)	Sampling Date		Sampling Date		Sampling Date		Sampling Date	mpling Date		
L	CLASS I	CLASS II	06/28/94		06/30/94		06/29/94		06/28/94			
	GW>10'		TOTAL	DISSOLVED	TOTAL	DISSOLVED	TOTAL	DISSOLVED	TOTAL	DISSOLVED		
Heptachlor Epoxide*	0.2	1	<				_ <		<			
Heptachlor*	0.4	2	<				<		<			
Lindane	0.2	1	<				<		<			
Methoxyclor	40	200	<				.<		<			
Toxaphene*	3	15		I				<u> </u>				

Note: All 620 groundwater standards are based on total analyses.

MG/L values for groundwater standards listed in 35 IAC 620 were converted to

< = Not Detected

Bolded Number = Exceeds GW Standard or Detected

recycled paper

SUMMARY ORGANIC ANALYTICAL RESULTS COLLECTED BY THE IEPA

COLLECTED BY THE IEPA	`,		Monitor Point No		Monitor Point No		Monitor Point No		
	1			•		•	1		
	35 IAC 620		G118		G14D		G14S		
	GW Standards	В	PRIOR 182		CESLF		CESLF		
Organic			Sample Type		Sample Type		Sample Type		
Parameter			GW		GW		lgw		
(ug/l) -	Unfiltered (To	tals)	Sampling Date		Sampling Date		Sampling Date		
	CLASSI	CLASS II	06/28/94		06/29/94	·	06/29/94		
	GW>10"		TOTAL	DISSOLVED	TOTAL	DISSOLVED	TOTAL	DISSOLVED	
620 VOLATILES									
1,1,1-Trichloroethane	200	1000	~	1	<		<		
1,1-Dichloroethylene	7	35	<	<u> </u>	<		~		
1,2-Dichloroethane*	5	25	<		<		<		
1,2-Dichloropropane*	5	25	<		<		<		
BTEX - 1	11705	13525							
Benzene*	5	25	<		<		<		
Carbon Tetrachloride*	5	25							
Cis-1,2-Dichloroethylene	70	200	<		<		<		
Ethylbenzene	700	1000	<		<		<		
Monochlorobenzene	100	500	<		<		<		
Styrene	100	500	<		<		<		
Tetrachloroethylene*	5	25	<	ļ	<u> </u>		<u> </u>		
Toluene	1000	2500	<u> </u>	<u> </u>	<		<u> </u>		
Trans-1,2-Dichloroethylene	100	500	<u> </u>	<u></u>	<		<		
Trichloroethylene*	5	25	<		<u> </u>		<u> </u>		
Vinyl Chloride*	2	10	<		<u> </u>		<u> </u>		
Xylene	10000	10000	<		<		<u> </u>		
620 SEMIVOLATILES				1	ł	l			
1,2-Dichlorobenzene (ortho)	600	1500	<		<		<		
1,4-Dichlorobenzene (para)	75	375	<		<		<		
PCBs*	5	2.5	<		<		<		
Pentachlorophenol*	11	5	<		<u> </u>		<	l	
Phenol (Misc.) ~					18			1	
Phenols	100	100	~		<	1	<		
620 PESTICIDES									
2,4,5-TP (Silvex)	50	250	-		·		·		
2,4-D	70	350			·	l	1		
Alachlor*	2	10							
Aldicarb	3	15	~		<		<		
Atrazine	3	15		1					
Carbofuran	40	200	<		<		<	i	
Chlordane*	$ \frac{1}{2}$	10	-	1	~~~~	l	<		
Endrin	2	10	-	1	- 		·	l — — — — —	

SUMMARY ORGANIC ANALYTICAL RESULTS COLLECTED BY THE IEPA

			Monitor Point No.		Monitor Point No		Monitor Point No	
	35 IAC 620		G118		G14D		G14S	
	GW Standard	s	PRIOR 182		CESLF		CESLF	·
Organic Parameter (ug/l)			Sample Type GW			Sample Type Sample Ty GW GW		
	Unfiltered (To	otals)	Sampling Date		Sampling Date		Sampling Date	
	CLASS !	CLASS II	06/28/94		06/29/94		06/29/94	
	GW>10'		TOTAL	DISSOLVED	TOTAL	DISSOLVED	TOTAL	DISSOLVED
leptachlor Epoxide*	0.2	1	<		<		<	
Heptachlor*	0.4	2	<		<		<	
Lindane	0.2	1	<		_ <		<	
Methoxyclor	40	200	<		<		<	
Toxaphene*	3	15						

Note: All 620 groundwater standards are based on total analyses.

MG/L values for groundwater standards listed in 35 IAC 620 were converted to

< = Not Detected

Bolded Number = Exceeds GW Standard or Detected

SUMMARY ANALYTICAL RESULTS COLLECTED BY THE IEPA

Seluko				Monitor Point No.	Monitor Point No.	Monitor Point No.	Monitor Point No.
ίο Ω			Cleanup	G106	G113	G115	G116
302C	Volatile		•				
ώ.		D14	l ⁻	PRIOR 182	PRIOR-BLACKWELL	PRIOR-BLACKWELL	PRIOR-BLACKWELL
	Organic	Permit		Sample Type	Sample Type	Sample Type	Sample Type
	Parameter	PQL	Applicable	GW	GW	GW	GW
	(ug/l)	(ug/i)	Standard	Sampling Date	Sampling Date	Sampling Date	Sampling Date
	· · · · · · · · · · · · · · · · · · ·		<u></u>	06/28/94	06/30/94	06/29/94	06/28/94
	VOLATILES				·		
	1,1,1-Trichloroethane	5		<	<	<	<
	1,1,2,2-Tetrachloroethane	5		<	<	<	<
	1,1,2-Trichloroethane	5	·	<	<	<	<
	1,1-Dichloroethane	5		<	<	<	<
	1,1-Dichloroethene	5					
ı	1,2,3-Trichloropropane	5					
	1,2-Dichloroethane	5					
	2-Butanone (mek)	10	 	<	<	<	<
1	2-Chloroethylvinyl Ether	10		<	<	<	<
	2-Hexanone (mbk)	10	<u> </u>	<	<		<
	4-Methyl-2-Pentanone (mibk)	10	ļ	<	<	<	<
	Acetone	10				_ <	<
	Acrolein	100 100		· · · · · · · · · · · · · · · · · · ·	_ 		
	Acrylonitrile	5	 				
	Benzene Bromocloromethane		l	<	-\ <u>`</u>		
	Bromodichloromethane	5					<
	Bromoform	5		<		- 	
	Bromomethane	5	!		- 	- 	``
-	Carbon Disulfide	 5				48	7
12						<i></i>	
-	Carbon Tetrachloride	5	<u> </u>	<	<		
	Chlorobenzene	5		<	<		<
_	Chlorodibromomethane	5		<	_ <		
	Chloroethane	10			<		10
	Chloroform	5		<	<	<	<
Ξ	Chloromethane	10		<	<	<	<
	Cis-1,3-Dichloropropene	5		<	<	<	<
	Dibromomethane	5	l				<
	Dichlorobromomethane			<	<	<	
	Dichlorodifluoromethane	5			_		<
	Ethyl Methacrylate	5					<
	Ethylbenzene	5		<	_	<	<
	lodomethane	5			_		<
	Methylene Chloride	5 10		<u> </u>			
•	>turono !	7(1	₹	•	1		' '

SUMMARY ANALYTICAL RESULTS COLLECTED BY THE IEPA

ě.	COLLECTED BY THE IEPA						
2				Monitor Point No.	Monitor Point No.	Monitor Point No.	Monitor Point No.
 (1	Į		Cleanup	G106	G113	G115	G116
og pe	Volatile		Objective	PRIOR 182	PRIOR-BLACKWELL	PRIOR-BLACKWELL	PRIOR-BLACKWELL
Ö,	Organic	Permit	or	Sample Type	Sample Type	Sample Type	Sample Type
	Parameter	PQL	Applicable	1 '''	GW	GW	GW
	(ug/l)	(ug/l)		Sampling Date	Sampling Date	Sampling Date	Sampling Date
	(09/1)	(49/1)	Standard	06/28/94	06/30/94	06/29/94	06/28/94
	Tetrachloroethylene	5		<	<	<	<
	Toluene	5		<	<	<	
	Total Organic Carbon			10.4		7.6	52.6
	Total Organic Halogens						
	Trans-1,2-Dichloroethene	5					<
	Trans-1,3-Dichloropropene	5		<	<	<	
	Trichloroethene	5				<u> </u>	<
i	Trichlorofluoromethane	5		<	<	<	<
	Vinyl Acetate	10		<		<	<
	Vinyl Chloride	2	ļ	<u> </u>	<u> </u>	<	<
	Xylene (total)	5	ļ	<		<u> </u>	
i	OTHER VOLATILES ORGANICS		ļ				
	Aldrin		 	< <	_ 		
	Alpha-Chlordane Dieldrin		<u> </u>				
	Gamma-Chlordane		[_	 	
	O,P' - DDD					 	
	O.P' - DDE		 	 		 	
	O,P' - DDT					 	
	P.P' - DDD			<		<	<
<u>:</u>	P.P' - DDE			<		<	<
ř.	P.P' - DDT			<		<	
=	SEMI-VOLATILE ORGANICS						
	1,2,4-Trichlorobenzene			<		<	<
3	1,2-Dichlorobenzene			<		<	<
É	1,3-Dichlorobenzene		l	<		<	<
3	1,4-Dichlorobenzene]			<u> </u>	ļ
Ξ.	2,4,5-Trichlorophenol			<u> </u>		<u> </u>	<u> </u>
	2,4,6-Trichlorophenol			<		<u> </u>	<
	2,4-Dichlorophenol		<u> </u>	<		<u> </u>	<u> </u>
	2,4-Dimethylphenol		ļ	<u> </u>		<u> </u>	<u> </u>
	2,4-Dinitrophenol 2,4-Dinitrotoluene		 	<		<	\\
	2,4-Dinitrotoluene 2,6-Dinitrotoluene		 	<	_	- 	
	2-Chloronapthalene		 			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	-
	2-Chir henol			· · · · · · · · · · · · · · · · · · ·			·
	E-OIL HELIOI		l			.1	.1

SUMMARY ANALYTICAL RESULTS COLLECTED BY THE IEPA

Г			1	Monitor Point No.	Monitor Point No.	Monitor Point No.	Monitor Point No.
:	1		Cleanup	G106	G113	G115	G116
	Volatile			PRIOR 182	PRIOR-BLACKWELL	PRIOR-BLACKWELL	PRIOR-BLACKWELL
	Organic	Permit	or	Sample Type	Sample Type	Sample Type	Sample Type
1	Parameter	PQL		1 ' ''	GW	GW	GW
1			Applicable				
	(ug/l) (ug/l)	(ug/i)	Standard	Sampling Date 06/28/94	Sampling Date 06/30/94	Sampling Date 06/29/94	Sampling Date 06/28/94
	Methylnaphthalen e			<		<	<
	Methylphenol		<u> </u>	<		<	<
	Nitroaniline			<		<u> </u>	<
2.	Nitrophenol	- 		<		<	<
	3'-Dichlorobenzidine		<u> </u>	<		<	<u> </u>
	Nitroaniline		 	<		<	<
4	6-Dinitro-2-methylphenol			<<		<	<
	Bromophenyl phenyl ether			<		<	<
	Chloro-3-Methylphenol			<		<	<
	Chloroaniline		<u> </u>	<		<	<
	Chlorophenyl phenyl ether			<		<	<
	Methylphenol			<		<	<
	Nitroaniline			<		<	<
	Nitrophenol			<		<	<
	cenaphthene			<		<	<
Ā	cenaphthylene			<		<	<
	nthracene			<		<	
B	enzo(a)anthracene			<		<	
B	enzo(a)pyrene						
B	enzo(b)fluoranthene						<
B	enzo(ghi)Perylene		1	<		<	
	enzo(k)fluoranthene						<
	enzoic Acid			<		<	<
Ē	enzyl Alcohol			<		<	
	is(2-chloroethoxy)methane			<		<	<
	is(2-chloroethyl)ether		1	<		<	<
· 1-	is(2-chloroisopropyl) ether			<		<	
lв	is(2-ethylhexyl)phthalate		1	160		<	16
	utyl benzyl phthalate		1	<		<	
	hrysene		1	<		<	<
مَّا	i-N-Butyl Phthalate		1		······································	<	
	i-N-Octyl Phthalate		1	<		<	<
	ibenz(a,h)anthracene		 	<		~ ·	
	ibenzofuran .		1	<			
	iethylphthalate		 	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	~
	imethylphthalate					<	

SUMMARY ANALYTICAL RESULTS COLLECTED BY THE IEPA

9	COLLECTED BY THE IEPA							<u> </u>
3 [Monitor Point No.	Monitor Point No.	Monitor Point No.	Monitor Point No.	
() (e) (Cleanup	G106	G113	G115	G116	I
ರಿಕ್ಷರ್ಥ	Volatile		Objective	PRIOR 182	PRIOR-BLACKWELL	PRIOR-BLACKWELL	PRIOR-BLACKWELL	
"	Organic	Permit	or	Sample Type	Sample Type	Sample Type	Sample Type	
	Parameter	PQL	Applicable	GW .	GW	GW	GW	
	(ug/l)	(ug/l)		Sampling Date 06/28/94	Sampling Date 06/30/94	Sampling Date 06/29/94	Sampling Date 06/28/94	
1	Fluoranthene			<		<	<	
Į	Fluorene			<		<	<	
1	Hexachlorobenzene			<		<	<	
- (Hexachlorobutadiene			<		<	<	_1
ı	Hexachlorocyclopentadiene			<		<	<	_
	Hexachloroethane		1	<		<	<	
- 1	Indeno(1,2,3-cd)pyrene			<		<		
- 1	Isophorone			<		<	<	
- 1	N-Nitroso-Di-N-Propylamine			<		<	<	
	Naphthalene			<		<	<	
- 1	Nitrobenzene			<		<	<	
	Phenanthrene			<		<	<	
	Pyrene			<		< .	<	
	APPROXIMATE QUANTITATIONS							
	2,2'-Azobis(2-Methyl) # ~						40	
	2-Bromo Cyclohexanol # ~					<	<	
	Acetone ~			< //	64	<		
	Alachior ~							
	Aliphatic Acid ~						5.4	
	Aliphatic Acid Esters ~							
5	Aliphatic Alcohol ~							
12.0	Aliphatic Hydrocarbons ~		<u> </u>				<	
	Aliphatic Ketones ~							8.5
	Atrazine ~							
-	Benzamide ~							
Ę	Benzamide, N,N-Dimethyl-3-Methyl # ~						<	
=	Bicyclo (3-1-1) Hept -2- EnE 2,6,6-Trimeth						<	
	Ethyl Ether ~			<u> </u>			19	
	N,N-Diethyl-3-Methyl # ~						20	
	Other Organics ~			33		180	630	
	Propanenitrile ~							

Note: All 620 groundwater standards are based on total analyses.

MG/L values for groundwater standards listed in 35 IAC 620 were converted to

< = Not Delected

ber = Exceeds GW Standard or Detected

SUMMARY ANALYTICAL RESULTS COLLECTED BY THE IEPA

			Monitor Point No.	Monitor Point No.	Monitor Point No.
	1	Cleanup	G118	G14D	G14S
Volatile	1	Objective	PRIOR 182	CESLF	CESLF
Organic	Permit	or .	Sample Type	Sample Type	Sample Type
Parameter	PQL	Applicable	GW	GW	GW
(ug/l)	(ug/l)	Standard	Sampling Date 06/28/94	Sampling Date 06/29/94	Sampling Date 06/29/94
VOLATILES					
1, 1, 1-Trichloroethane	5		<	<	<
1, 1, 2, 2-Tetrachloroethane	5		<	<	<
1,1,2-Trichloroethane	5		<	<	<
1,1-Dichloroethane	5		<	<	<
1,1-Dichloroethene	5				
1,2,3-Trichloropropane	5				
1,2-Dichloroethane	5				
2-Butanone (mek)	10		<		<
2-Chloroethylvinyl Ether	10		<	<u> </u>	<
2-Hexanone (mbk)	10		<	<	
4-Methyl-2-Pentanone (mibk)	10		<	~ ~	<
Acetone	10		<	<	<
Acrolein	100				
Acrylonitrile	100				
Benzene	5		<	<	<
Bromocloromethane					
Bromodichloromethane	5		<	<	< .
Bromoform	5		<	<	<
Bromomethane	5		<	<	<
Carbon Disulfide	5		5.5	<	<
Carbon Tetrachloride	5		<	<	<
Chlorobenzene	5		<	<	<
Chlorodibromomethane	5				
Chloroethane	10		<	<	<
Chloroform	5		<		<
Chloromethane	10		<	<	<
Cis-1,3-Dichloropropene	5		<	<	<
Dibromomethane	5		<	<	<
Dichlorobromomethane					
Dichlorodifluoromethane	5		<	<	<
Ethyl Methacrylate	5		<	<	<
Ethylbenzene	5		<	<	<
lodomethane	5		<	<	<
Methylene Chloride	5				
Sturone	10		1		

SUMMARY ANALYTICAL RESULTS COLLECTED BY THE IEPA

COLLECTED BY THE IEPA					
			Monitor Point No.	Monitor Point No.	Monitor Point No.
ļ		Cleanup	G118	G14D	G14S
Volatile	i	Objective	PRIOR 182	CESLF	CESLF
Organic	Permit	or	Sample Type	Sample Type	Sample Type
Parameter	PQL	Applicable	GW	GW	GW
(ug/l)	(ug/l)	Standard	Sampling Date	Sampling Date	Sampling Date
(00.1)	(-9,	O.u.i.dui.d	06/28/94	06/29/94	06/29/94
Tetrachloroethylene	5		<	<	<
l'oluen e	. 5				
Total Organic Carbon				6.2	5.3
Total Organic Halogens					
Trans-1,2-Dichloroethene	5		<	<	<
Trans-1,3-Dichloropropene	5				
Trichloroethene	5		<	<	<
Trichlorofluoromethane	5		<	<	<
Vinyl Acetate	10		<	<	<
Vinyl Chloride	2		<	<	<
Xylene (total)	5				
OTHER VOLATILES ORGANICS					
Aldrin .					
Alpha-Chlordane		·	<	<	<
Dieldrin			<	<	<
Gamma-Chlordane			<	<	<
O,P' - DDD			<	<	<
O,P' - DDE			<	<	<
O _I P' - DDT			<	<	<
P,P' - DDD			<	<	<
P,P' - DDE			<	<	<
P,P' - DDT					
SEMI-VOLATILE ORGANICS	-	•			
1,2,4-Trichlorobenzene			<	<	<
1,2-Dichtorobenzene			<	<	<
1,3-Dichlorobenzene			<	<	<
1,4-Dichlorobenzene					
2,4,5-Trichlorophenol			<	<	<
2,4,6-Trichlorophenol			<	<	<
2,4-Dichlorophenol			<	<	<
2,4-Dimethylphenol			<	<	<
2,4-Dinitrophenol			<	<	<
2,4-Dinitrotoluene			<	<	<
2,6-Dinitrotoluene			<	<	<
2-Chloronapthalene			<	<	<
2-Chlorophenol			<	<	<

SUMMARY ANALYTICAL RESULTS COLLECTED BY THE IEPA

COLLECTED BY THE IEPA				
		Monitor Point No.	Monitor Point No.	Monitor Point No.
	Clea	nup G118	G14D	G14S
Volatile	Objec	ctive PRIOR 182	CESLF	CESLF
Organic	Permit o	Sample Type	Sample Type	Sample Type
Parameter	PQL Applie	cable GW	GW	lg w
(ug/l)	(ug/i) Stand	dard Sampling Date 06/28/94	Sampling Date 06/29/94	Sampling Date 06/29/94
2-Methylnaphthalene		.<	<	<
2-Methylphenol		<	<	<
2-Nitroaniline		<	<	<
2-Nitrophenol		<	<	<
3,3'-Dichlorobenzidine		<	<	<
3-Nitroaniline		<	<	< ,
4,6-Dinitro-2-methylphenol		<	<	<
4-Bromophenyl phenyl ether		<	<	<
4-Chloro-3-Methylphenol		<	<	<
4-Chloroaniline		<	<	<
4-Chlorophenyl phenyl ether	1	<	<	<
4-Methylphenol		<	<	. <
4-Nitroaniline	_	<	<	<
4-Nitrophenol		<	<	<
Acenaphthene			· · · · ·	· · · · · · · · · · · · · · · · · · ·
Acenaphthylene	- -	<	<	<
Anthracene				
Benzo(a)anthracene				
Benzo(a)pyrene	<u> </u>			
Benzo(b)fluoranthene		<	<	<
Benzo(ghi)Perylene				
Benzo(k)fluoranthene				<u> </u>
Benzolc Acid		`		
Benzyl Alcohol				
Bis(2-chloroethoxy)methane	- 			
Bis(2-chloroethyl)ether		`		
Bis(2-chloroisopropyl) ether	- 		<	
Bis(2-ethylhexyl)phthalate	-[<
Butyl benzyl phthalate	 		——	
Chrysene	 	<	<	< .
Di-N-Butyl Phthalate				
Di-N-Octyl Phthalate	1	<		
Dibenz(a,h)anthracene	- 		 - 	
Dibenzofuran	- 	 		
Diethylphthalate	- 			
Dimethylphthalate	-1			

SUMMARY ANALYTICAL RESULTS COLLECTED BY THE IEPA

COLLECTED BY THE ICFA		 	Monitor Point No.	Monitor Point No.	Monitor Point No.
		Cleanup	G118	G14D	G14S
Volatile		1			l '
	Di4	Objective	PRIOR 182	CESLF	CESLF
Organic	Permit	or	Sample Type	Sample Type	Sample Type
Parameter	PQL	Applicable	GW	GW	GW
(ug/l)	(ug/l)	Standard	Sampling Date 06/28/94	Sampling Date 06/29/94	Sampling Date 06/29/94
Fluoranthene			<	<	<
Fluorene		l	<	<	<
Hexachlorobenzene			<	<	<
Hexachlorobutadiene		 	<	<	<
Hexachlorocyclopentadiene			_ <	<	<
Hexachloroethane		.	<	<	<
Indeno(1,2,3-cd)pyrene		·	{		
Isophorone			<u> </u>		<u> </u>
N-Nitroso-Di-N-Propylamine		·	<		
Naphthalene Nitrobenzene			<u> </u>		<u> </u>
Phenanthrene		· 			-
Pyrene					
APPROXIMATE QUANTITATIONS		 	 		— — — — — — — — — — — — — — — — — — —
2,2'-Azobis(2-Methyl) # ~	<u> </u>				
2-Bromo Cyclohexanol # ~			<	<	<
Acetone ~					
Alachlor ~					
Aliphatic Acid ~		<u></u>		13	
Aliphatic Acid Esters ~					
Aliphatic Alcohol ~		1			
Aliphatic Hydrocarbons ~			<	<	<
Aliphatic Ketones ~		<u> </u>	8.5		
Atrazine ~					
Benzamide ~					
Benzamide, N,N-Dimethyl-3-Methyl # ~			<	<	<u> </u>
Bicyclo (3-1-1) Hept -2- EnE 2,6,6-Trimeth		- 	<	<u> </u>	<
Ethyl Ether ~		.	<u> </u>		
N,N-Diethyl-3-Methyl # ~					
Other Organics ~			69	120	150
Propanenitrile ~					

Note: All 620 groundwater standards are based on total analyses.

MG/L values for groundwater standards listed in 35 IAC 620 were converted to

< = Not Detected

Bolded Number = Exceeds GW Standard or Detected

APPENDIX B

REFERENCE DOCUMENTATION

M		REFERENCE				
ecology and environment, in	TELEPHONE L	OG				
CHICAGO, ILLINOIS						
CONTACT.	COMPANY OF AGENCY	POSITION				
Connie letski	IEPA- Collinsi	CONTACT PHONE NUMBER				
Collingille Pregimes (30 (~	618) 346 - 5120				
EAE ENPLOYEE	DATE	7.145				
	8/18/95	30				
PROJECT: NUMBER SITE	NAME and LOCATION					
273051 PM	uor Landfill	Centralya, 1L				
DISCUSSION The sufe	is not entire	ly lanced				
locked gates l						
()		- I				
on the north side		• •				
Perrine Rd - (This is the	Prior-Blackvell				
pite)or in the we	St and for	th sides.				
There is eviden		•				
trails one or de						
g the landfill.						
\ \	intermetter	t Stream				
flaving in a well						
Mr. Letoki	will low a t	DPO SAMÍA				
The exact bours	laries of y	ne della rent				
land Gils. The exac	t location of the	OKI CITY DUMK				
north of the setil is	not Known.	Uso there are				
no residences using grandwater as deinling water						
near the site.	0	/				
0.000 T.1105		/ 1				
SIGNATURE Indo Dres		PAGEOF				

<u></u>		,RC1	CHENCE					
E ecology and environment, inc.	TELEPHONE LOG	i						
CHICAGO, ILLIMOIS								
CONTACT	COHPANY OF AGENCY		POSITION &					
Jerry Sanders	entralia Publich	Jarks	Operator					
CONTACT ADDRESS		CONTACT	PHONE NUMBER					
		618)	533-7681					
CAC EMPLOYEE	DATE	1140	<u>.</u>					
Lindakhors	8/18/95		100					
	AHE and LOCATION	^ .						
	ior Landfill	(Ph)	alia, I					
DISCUSSION The veside	nts from the	cil	, H .					
	1		` .					
Centralia opten	n drinking		ater from					
a municipal D/St	en that dra	<u>cu</u>	water					
from Racoon Lake	Resurvir. T	ne 1	noter					
intakes are loc	att to boto	wes.	t end					
•	e lake us		· · · · · · · · · · · · · · · · · · ·					
in 1992 it is			, ,					
it perus 40,0			The					
	10 (at < 0) 3 (a) 5 (a)		East side					
	•		1 12					
Mr. Sarders is not		,	ans_					
using groundwate	V for drinke	Myu	iater.					
\		,	S. W of					
Racon Lake.	. , , , , , , , , , , , , , , , , , , ,		U					
	0-10							
Lebster Cheek flows J.w.								
SICHATURE , N	·	<u>, </u>						
Judanfra	h	PACE	or 1					

Co.		REFERENCE	•
ecology and environment,	inc. TELEPHONE L	og	
CONTACT	COMPANY OF AGENCY	POSII	110#
Connie Letski	IEPA - Colle	sville Site	Mgr.
CONTACT ADDRESS		CONTACT PHONE	NUMBER
E&E EHPLOYEE	DATE	618) 346-	5120
Linda Knora	7/28/95	11HE 2/ /0	
	HOTTASOL Des SHAN ST	· · · · · · · · · · · · · · · · · · ·	
2/3051	Prior Lardfill	Centralia	,14
DISCUSSION ML FRASK	e is the phior		
maracer - The prior	•	•	
wastes - it is u			
gourdwater viciation	is in effect.		
	roud not give	me deta	led
information - not à	U		
need to walk her s	1		
The can dividely e.			
to bet her know		•	
et ?			
The landful is	a Goldted in a A	wal exte	<u> </u>
no residences (10 the Racoon Jake	- reservor - (m	o garrele	akr
used.) There is a			
started Leachente	•		
Special auste and	liquid waste	(ma le fsh	li coul
no state atat) wa	s compted in 7	he Lardfill	,
SIGNATURE Lendan Ano		PAGE /	
1 1 may and 1. 1. 1. 1. 1. 1. 1. 1.	// 		